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Intensities of Pure Rotational Band Systems of Symmetrie Top Molecules 

W. Jfelkmus 
Space Science laboratory. General Dynamics/Convair, San Diego, California 92112 

ABSTRACT 

An exacr expression for the total intensity of the pure 

rotational band system of a rigid symmetric top molecule is 

derived. An approximate expression for the mean spectral 

absorption coefficient is obtained and is compared with 

previously published results. The first-order effects of 

non-rigidity and mechanical anharmonicity on the band intensity 

are investigated in the special case of a diatomic molecule 

and found to be small in general. 
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INTRODUCTION 

The total xntensity of the pure rotational band system of a molecule 

is defined as the sum of the intensities of all transitions of the molecule 

in which the vibrational quantum number does not change. We will start 

with the expression for the intensity of a single rotational transition 

of a sjinmetric top molecule and sum this expression over all the quantum 

numbers involved to obtain an exact expression for the total band intensity. 

An approximate expression will be derived for the mean absorption coefficient 

for which the exact summations involved cannot be performed. 

For clarity of presentation, the following development neglects the 

effect ^f alternating statistical weights, and strictly applies only to 

an accidentally symmetric top molecule. However, the proof for the 

general case of a symmetric top molecule of point group C  (such as the 

CL molecules - NH_, CEJCl,  etc.) proceeds in exactly the same manner, 

but requires more cumbersome equations and additional definitions. 

TOTAL BAND INTENSITY 

The intensity of a pure rotational line of a symmetric or asymmetric 

top is given by 

eVj'tV        OTT3  JVJTM    2      r.. ,      he      x-,Vl*      I2 M\ 
SvJTM'  = 3h^ -l"" ^o *-exP(- ST ^ L  "Sgl JTM,JVM''   M 

where 

J^ = | exp[-E(v,J,T,M)/kT]/Q (2) 

is the number of molecules per unit volume and unit pressure in the 

state described by the usual quantum numbers (V,J,T,M), 



Q = ^  exp[-E(v.J,T,M)/kT] (3) 

VJTM 

is the total partition function, and the *F are the direction cosines 

between the space-fixed F and rotating g axes. 

If Eq. (l) is summed over M and M', we obtain 

FM4 

since the energy levels and frequencies are independent of M and M , 

If we consider the top rigid, i.e., 

E(V,J,T) = hc[G(v) + F(J,T)] , (5) 

and sum over v, we obtain 

rMM 

3hc p po     Qg 

where Q- is the rotational partition function 

QR= I   expC-||F(J,T)] . (7) 

JTM 

We now specialize to the case of the symmetric top, for which we 

.  2 
have 

F(J,K) = BJ(J+1) + (A-B) K2, (8) 

where the symmetric top quantum number K (which runs from 0 to J) is 

now used in place of T. For a J - J+l transition, we have (since AK = 0) 



a = 2B(J+1), (9) 

and 

WPM 

From Eq. (6), we obtain 

qJ+lK  8.3 N 2 exp{> ^BJ(J+1) 4 (A-B) K
2]} 

J  K = 3hc p ^o ^ 

X 2B(J+1) {l-eXp[- H 2B(J+1)]} -^f^ (2-6OK).     (ll) 

The quantity S   is now obtained by summation over K: 

SJ+1 ' S f "o | {^- S MtW)] -exp[- ^ BCJ.!)^)]} 

J 

K=0 

!ßie summations over K in Eq. (12) cannot be expressed in closed 

form. We will approximate the sums later by integrals, and derive an 

approximate expression for the absorption coefficient. However, we 

will continue the present development in order to obtain an (exact) 

expression for tne band intensity. 

If we define the quantities f(j) and g(j) as follows: 

J 

f(j) = | (2-5OK) expC- H (A-B) K2] (13) 

K=0 



and 

g(j) = 2 ^ K2 expC- H (A-B) K2], m 
K=:0 

then we have 

"3       TJ 

S
J

+1
 - ife f "i: {exp[- &J

(
J+1

)J -ex^- |^(j+i)(j+2)i}[{j+i)
2f(j)-g(j)], (15) 3hc p ^ 

and Eq. (7) becomes 

^ = ^ (2J+1) exp[- ||BJ(J+1)] f(J). (16) 

J=0 

We note here that if the derivation is carried through for a non- 

accidfntaUy symmetric top molecule, an additional nuclear spin-dependent 

factor in the statistical weights must be considered.  (This factor has 

implicitly been assumed constant here and, hence, has been neglected.) 

2 
This factor is dependent only on the quantum number K. Extended 

definitions analogous to Eqs. (13) and (l^) can then be made and carried 

through in the same manner to produce the same results. 

The total rotational band intensity, given by 

«(T) = I   S?\ (17) 

J=0 

is obtained by substituting Eq. (15) into Eq. (l?) and rearranging terms: 

/m\     /Ifrr   N   2 _ aW = [-^ p ^0 B 1 | L expE-hcBJ^p/kTK^Cf (j)-f (J-l)]-g(j)-»-g(J-l)} 

Iexp[-hcBJ(J+l)/kT]   (2J+1) f(j) 
•   (18) 



But fron the definitions of f(j) and g(j), ve have 

/[f (j)-f (J-1)] . 2J2 expC- gl (A-B) J2] (19) 

and 

[f(j)-g(J-l)] = 2J2 expC- || (A-B) J2] . (20) 

Thus the curly-bracketed term in Eq. (16) vanishes identically, leaving 

„(T) = i|! 2 „2 B. (21) 
'   3hc p o 

N      ! Since — = ■n=, this can be written p      kT' 
o    o 

lÖTT0   p.     B 

or 

a(2730K) = 22.^5 \? B cm^atm'1, (23) 

where B is in cm  and p, is in debye units. Thus we find that 

^ c^) = T? Q'(T2), (21^) 

that is, the (density-corrected) intensity of a pure rotational banü 

system of a rigid symmetric top molecule is independent of temperature. 

We note here that the expression for the total band intensity is 

a function of B but not of A. This is related, at least in part, to the 

fact that the frequency of the radiation depends only on B. The limiting 

case A-*00 was treated by Golden, who determined the absorption coefficient 

as a function of frequency for the rigid rotator model. Integration of 

Golden's Eq. (5) over frequency yields an expression for total band 
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; 

intensity which is consistent with Eq. (22) within the approximation 

involved in replacing the summation over J by an integration. 

APPROXIMATE MEAN ABSORPTION COEFFICIENT 

The mean absorption coefficient k is given by Sj /d, where d r-. 2B 

is t bhe line spacing, so that we have from Eq. (15) and Eq. (9) 

K = S^/d -~^rl\ W- i^D] -exi{- iB(J+l)(J+2)]} 

x [(J+l)
2f(J)-g(J)]. (25) 

The sums involved in the definitions of f(j), g(j) and ^ cannot be 

performed exactly. If we approximate the sums by integrals^ we obtain 

(J4) 
f(j)«J exp[- || (A-B) rjdK 

-(J4) 

'kT 

and,  similarly. 

^       erfC^ || (A-B) (J^)] , &) 

&) . ^-^ ert[y ||(A-B) (J+4)J. ^JMi e^- ||(A-B)(J+|)2].  (^7) 
2-L^(A-B)l kT(A-B) 

LkTN      ' 

To the same degree of approximation, we have for the rotational 

partition function 

I co (J4) 
^ . J (2J+1) exp[- ||BJ(J+1)] J    exi[- ^(A-B)K

2] dKdJ 

4 -(J4) 

or 



i(A-B) ° 
erf /^(A-B)ll dl.     (28) 

.V kT 

But since 
2 2  "^ 

x exp(-x ) erf (ax)dx = ^ a(a +l) , we have 

^(|i) kT,3/2  1 
(29) 

X he 4 
if we set exp(T- pp B) »1. Thus the use of this customary expression 

for Qp is completely consistent with the assumed model and approximations; 

further comment will be made on this point in discussing the limiting 

case Ar^. 

Thus we obtain the following explicit expression for Is.: 

MS f a W/2 ^ W- >(^)M- iB(J+i)(J+2)]} >3hc p "o/   c 

X{ £=; (J+l)
2 er^/HCA-B)'^)] 

he 
kT 

(A-B) 

^—^ erf[y ||(A-B)  (j^)] +      JJ^)  (exp[- ||(A-B)(j4)2]},     (30) 
2C||(A-B)] V  kT^-3) 

or, to a degree of accuracy consistent with the previous approximations. 

Mg f $ i(i) m W- >Mh*i- i.(-)(^)]} 
\'TT 

x (J+I)
2
 GCVCA-B) ^ (J+Dl , (31) 

where 
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G(Z) = ^  (1- -^) erf(z) + i exp(-z2). (32) 
2z 

The power series representation of G is given by 

00 

n=0 

Equation (31) is not consistent with the expression for the absorption 

coefficient presented by Penner [Eq. (ll-lS^) ]. There appear to be two 

causes of discrepancy. 

First, the induced emission term [l-exp(-hcu)/kT)] was implicitly 

assumed to be approximately unity in the derivation of Eq. (11-13^) . 

Such an approximation is not valid in gene, il for a pure rotational band 

as can be shown by the following argument: Consider a spherical top 

molecule (for simplicity). The population of a given J state is approxi- 

mately proportional to ü exp(-ßjr), which is a maximum for ßiF = 1. For 

this value of J, the induced emission term [l-exp(-2{3j)] is equal to 

[l-exp(-2/j)]. Even at temperatures low enough for the maximum population 

to lie in the J = 3 ^tate, the induced emission term is equal to 

[l-exp(-2/3)] RS 0.^9. With increasing temperature, the induced emission 

term decreases; thus approximating this term by unity is, in general, not 

reasonable. 

Secondly, Eq. (31) differs from Di, {ll-l^ky  by a factor of 

approximately 2 or 3» This appears to result from the use of a summation 

rule [Eq. (7.116%) ] in which a sum of matrix elements is taken over the 

upper state values of J-l, J, and J+l, by analogy to the case of a 

vibration-rotation band system. In such a system, a lower state J can go 



to an upper state J-l, J, or J+l. Hovever, in the pure rotational band 

system under consideration, the only corresponding transition is J - J+l. 

In the limit of A-*6, Eq. (3l) is consistent with Golden's Eq. (5), 

to the degree of approximation previously noted. Since it can be seen 

that the approximate expressions for f(J), g(j) and G^ become arbitrarily 

poor for large A, we will comment briefly on this point. 

We note that in the limit as A-»00, we have from Eqs. (13), (l^), and 

(16) 

f(J) - 1 , (3*0 

g{J) -* 0 , (35) 

and 
OS 

\-\   (2J+1) exp[- |^J(J+1)], (36) 

J=0 

i.e., the rotational partition function for a linear molecule. Approximating 

k 
tnis sum by an integral in the usual way yields 

Thus, in this limit we have 

f (J)/^ - hcB/kT (38) 

and 

ZÜ)/\ -  0. (39) 

But exactly the -ame results are obtained by taking the ratios of the 

approximate expressions used (i.e., the ratios of Eqs. (26) and (27) to 

Eq. (29)). Only these ratios are used in the present work-, thus the 
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limiting case of A-*» is a valid limit although the separate expressions 

for f(J), g(j) and Q^ becone arbitrarily poor approximations for large A. 

EFFECTS OF CENTRIFUGAL STRETCHING 

WP. vill consider here only the special case of a diatomic molecule; 

a general formulation for polyatomic molecules is not feasible since 

each different molecular configuration presents a different geometrical 

problem. It is felt that the magnitudes of the effects determined for 

the diatomic molecule will be representative at least of those of the 

simpler polyatomic molecules. 

We will consider the effect of nonrigidity of the molecule on the 

band intensity through (a) its effect on the energy level structure 

(and, hence, on the emitted frequencies) and (separately) through (b) 

its effect on the electric dipole moment. 

One would expect that since centrifugal stretching tends to lower 

the energy levels and decrease m  , the net effect of (a) would be to 

lower the total band intensity. Also, since the stretching may tend to 

increase the dipole mCiüent (at least, for diatomic molecules, in many 

cases), one would also expect that the net effect of (b) would be to 

increase the total band intensity. These two effects will be investigated 

quantitatively. 

The energy levels of a diatomic molecule (with the first approximation 

x 6 
to the effect of centrifugal stretching) are given by 

F(J) = BJ(J+1)-DJ2(J+1)2. (40) 

The second term is assumed to be a small correction. For this simple 

model, D is related to the rotational and vibrational constants: 
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D  /2Bx    2 (la) 

The frequency of radiation is then 

uJ+l  = F(J+1)-F(J) = 2B(J+1)-4D(J+1)3. (U2) 

We then have for the intensity of a J - J+l transition 

,J+1 
r-Ön3!).2 

o N 
L 3hc pJ ^ 

^ [2B(J+1)-1+D(J+1)31(J+1) 

x iexp[-ßJ(J+l)]exp[6J2(j+l)
2]-expC-ß(j+l)(j+2)]exp[6(J+l)2(J+2)2]} (43) 

(using the notation 9 = r=B and 6 = rp^)- 

If we expand the exponential functions involving D, retaining the 

first-order terms, and proceed as before, we obtain for the band intensity 

01  = [itr f] ^ {2BI (2J+l)exp[-ßJ(J+l)] 

- SDY (2J+l)j(j+l)exp[-ßj(J+l)] 

+ 2B6^ ^2J+l)j2(j+l)2exp[-ßJ(J+l)]} .     (MO 

To the same approximation we have 

^ = V (2J.-l)exp[-0J(J+l)][l+8J2(J+l)2] L 

where Q^ = (^(D = 0) = ß" . Thus we have 

(^5) 
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-2- ^ = ^[i+aeß^] (^6) 

In terms of Q?, we have for the band intensity 

.8n 3.2 
a  r!^o g o l     2   [2BQ°-8D(- I $  + 2B6 -% Q°], (vr) 

from which we obtain 

a = 
.8n3|i2 

- 3hc p 
2 NJ —L_ j^B-SDe'-^Bee"2] 

1+2 6ß 
(^) 

or 
3.2 P-3 * 

(^9) 

We now consider the effect of the varying dipole moment. We write 

Ü = M-0 + U-L Ar, (50) 

and express Ar in terms of the molecular constants: 

Ar = ^ re J(J+1) 
tu c 

y reJ(J+l). (51) 

Thus we find 

u, = a 11+ — ^      ^oL        M> V    J(J+1)] (52) 

or 

^ = ^ [1+2 ^- J(J+1)]   , (53) 

where 

e = vSv W 

13 



If this value of v  Is substituted for u in Eq. (ll), we obtain 

.8n3..8 

after similar manipulation, 

If ve combine Eqs,   (^9) and  (55), we find, for the net effect of 

centrifugal stretching, 

3 2 

01 = LlhT iM1^ B h^B + U   6   hHIJ- (56) 

P 
D   PB     2 

If we assume further that - = (—)  (=\ ) [Eq. (^l)], we have 

.8n3..2 

a = > M^ s (i-1) m ■        (5T) L 3hc pJ 

2 jjir       _5 
Investigating orders of magnitude, we find that since ky    r—rr ~ T x 10 

for most diatomic molecules, the correction is small for T — 10 . We 

note that (l- ^)  is not large unless 9 »: 0, which implies that u (and a) 

are small. Although then j(l- -)1 « u  , there is a multiplicative 
ö    o 

factor of u in Eq. (57), which will still dominate. Hence, for 9 ^ 0, 

the percent correction may be large, but it is small on an absolute basis. 

For the other special case of 9 = +1 (which is approximately true for 

KCl  and HF), the net effec of centrifugal stretching vanishes. 

EFFECTS OF MECHANICAL ANHARMONICITY 

We next consider the fact that the rotational constants may vary 

with the vibrational quantum number (as a result of the mechanical 

anharmonicity of a real molecule). 

If, in the previous development, the rotational constants are not 

IU 



considered independent of v as in Eqs. (5) and (8), and, instead, the 

expression 

B(v) = Bo - ^v (58) 

is used, we obtain (after a similar sequence of manipulations and 

approximations) 

In effect, the rotational constant B is replaced by the (population- 

weighted) average value of B(v) at temperature T. The correction term 

is of the order of 1-.0002 for T ~ 10 . 

In order to obtain the corresponding correction for the dipole 

moment, we note that in a vibrational state defined by the quantum 

number v, we have 

» ^ (1 + 2 ^1 <4r>av). (60) 

_2 
To relate <Ar>  to v, we note that since B ^ <r >  , we have 

B(v) = Bo - aev oc <r-
2>av Ä r^

2 (1 - 2<Ar)av/re).        (6l) 

Thus, we have, approximately 

2<Ar) Vr = a v/B^ (62) 
^■sr e   e ' o 

and 
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Proceeding as before, we find that we have (considering only the 

effect of the dipole moment varying with each vibrational state) 

3 2 

On combining the effects of variable B and gt, we obtain 

a„3 2 
pörr-1 u_ ~-i , ff ^   , _     -,-1, 

a = ' - !K 1^- ^ |) "r [»pt «o)-^]"1} •        «*) L 3hc  p- 

The comments made after Eq. (57) also apply here, although the magnitude 

of the correction is considerably smaller, in general. 

Thus the expression for the rotational band intensity combining the 

corrections for the variation of B and ^ with both v and J can be written 

as follows: 

fin3 2 

r  ^o ri,^ 1, /, IM',. 2 kT   ae r  /he  x in-lM    /^N a =    —^r 2B il-(l- KA^y    v- t. + S- LexpCr^ w  )-lJ  Jr«   (DO) L 3hc pJ o i    9 \   hcB   B     kT o7 J /J    v ' ^ o   o 
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